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SUMMARY

Many common variants have been associated with

hematological traits, but identification of causal

genes and pathways has proven challenging. We

performed a genome-wide association analysis in

the UK Biobank and INTERVAL studies, testing 29.5

million genetic variants for association with 36 red

cell, white cell, and platelet properties in 173,480

European-ancestry participants. This effort yielded

hundreds of low frequency (<5%) and rare (<1%) var-

iants with a strong impact on blood cell phenotypes.

Our data highlight general properties of the allelic

architecture of complex traits, including the propor-

tion of the heritable component of each blood trait

explained by the polygenic signal across different

genome regulatory domains. Finally, throughMende-

lian randomization, we provide evidence of shared

genetic pathways linking blood cell indices with

complex pathologies, including autoimmune dis-

eases, schizophrenia, and coronary heart disease

and evidence suggesting previously reported popu-

lation associations between blood cell indices and

cardiovascular disease may be non-causal.

INTRODUCTION

Modern genetic analysis has transformed our understanding of

the contribution of inherited variation to complex human disease.

Over the last decade, the widespread application of large-scale

genome-wide association studies based on sparse genotyping

arrays has led to a dramatic increase in the number of known
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disease-associated genetic variants (Hindorff et al., 2009). The

development of clinically useful applications of these discov-

eries, such as disease prediction algorithms, identification of

etiological mechanisms (Ferreira et al., 2013; Voight et al.,

2012), and prioritization of new targets for drug discovery (Lopez,

2008) has lagged behind. This is due partly to the characteristics

of the disease-associated variants, which are predominantly

common (minor allele frequency [MAF] R5%), which tend to

be associated with small differences in disease risk and

which often lie in regulatory regions of the genome, hindering

the identification of causal alleles, genes, and disease

mechanisms.

Examples of low-frequency (MAF = 1%–5%) and rare variant

(MAF <1%) associations are beginning to emerge from the

application of massively parallel whole genome and exome

sequencing to human populations (Polfus et al., 2016). Associ-

ated rare variants tend to be easier to link to genes as they

map predominantly in or near coding regions and have fewer

correlated variants. Furthermore, they can have larger pheno-

typic effect sizes and are more likely to act through interpretable

mechanisms such as disruption of protein function. These fea-

tures also enhance their clinical and scientific usefulness. For

instance, rare loss of function alleles can be used to assess

the likely consequences of modulating a pathway pharmacolog-

ically to prevent disease (Plenge et al., 2013). However, very

large studies are required for power to detect rare variant asso-

ciations and consequently the sequencing approach is still rela-

tively limited by cost.

Genotype imputation of large population cohorts (i.e., the

systematic genome-wide statistical inference of unmeasured

genotypes using exogenous reference panels of sequenced indi-

viduals) (Howie et al., 2011) is fast becoming a viable strategy to

explore rare and low-frequency variant associations. Increas-

ingly large whole-genome sequencing (WGS) reference panels

are being created. Larger panels include rare alleles from more

variants and better capture the between-variant correlation

structure of study populations (1000 Genomes Project Con-

sortium et al., 2015; Iotchkova et al., 2016b; Loh et al., 2016;

UK10K Consortium et al., 2015). Here, we exploit the recent im-

provements in the quality of imputation to carry out association

analyses of rare and low-frequency genetic variants with 36

different blood cell indices.

Blood cells make essential contributions to oxygen transport,

hemostasis, and innate and acquired immune responses (Jenne

et al., 2013; Jensen, 2009; Varol et al., 2015) and participate in

many other functions such as iron homeostasis, the clearance

of apoptotic cells and toxins, vascular and endothelial cell func-

tion, and response to systemic stress (Buttari et al., 2015). Qual-

itative or quantitative abnormalities of blood cell formation, and

of their physiological and functional properties, have been asso-

ciated with predisposition to cancer and with many severe

congenital disorders including anemias, bleeding, and throm-

botic disorders and immunodeficiencies (Routes et al., 2014;

Schneider et al., 2015). Furthermore, variations in the properties

of many blood-cell subtypes have been associated with a wide

variety of systemic diseases. However, the causal relationships

between blood indices and disease risks are unclear and this

hinders their potential value for informing new treatments.

We report over 2,500 variants independently associated with

variation in the 36 indices. We examine the genetic architecture

of the associated variants and use them to reveal causal relation-

ships with autoimmune, cardiovascular, and psychiatric dis-

eases. Overall, this study expands the repertoire of genes and

regulatory mechanisms governing hematopoietic development
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in humans and opens potential avenues for targeting key path-

ways involved in abnormal or dysregulated hematopoiesis.

RESULTS

Genetic Discoveries

To identify genetic variants associated with 36 blood cell indices

with increased resolution and statistical power, we studied a to-

tal of 173,480 European ancestry individuals from three large-

scale UK studies—INTERVAL (Moore et al., 2014), approved

by Cambridge (East) Research Ethics Committee, UK Biobank

(Sudlow et al., 2015), and UK BiLEVE (a selected subset of the

UK Biobank cohort) (Wain et al., 2015), both approved by the

North West Multi-centre Research Ethics Committee (Figures

1, S1, and S2; Tables S1 and S2). We tested univariate associa-

tions of 36 indices with 29.5 million imputed variants passing

quality control filters (MAF >0.01%, Figure S3) and used

stepwise multiple regression to identify a parsimonious subset

of genetic variants explaining the genome-wide significant

(p value < 8.31 3 10 9) associations for each trait (Xu et al.,

2014) (STAR Methods). We identified 6,736 conditionally inde-

pendent index-variant associations and clustered these variants

into 2,706 high linkage disequilibrium (LD) groups each repre-

sented by a sentinel variant (between-sentinel pairwise LD r2 <

0.8) (Figure 2; Tables S3 and S4). We confirmed the accurate

imputation of variants at the rare end of the allelic spectrum by

genotype comparisons with high read-depth (>503) whole

exome sequencing data from overlapping individuals, which

showed 92.95% concordance and 94.97% precision for rare

alleles (STARMethods). Of the sentinel variants, 283 were corre-

lated (r2R 0.8) with previously reported variants (Table S5), vali-

dating most blood trait associations reported in populations of

European ancestry (Gieger et al., 2011; van der Harst et al.,

2012; Vasquez et al., 2016).

The sentinel variants included an unprecedented number of

low-frequency (n = 210) and rare (n = 130) alleles (Figure 3A).

The genetic associations were almost completely cell-type-spe-

cific (Figure 3B), with 900 sentinels (33%) associated exclusively
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Figure 1. Study Design for GWAS of Complete Blood Count Indices

The phenotypes and their classification by hematopoietic cell type; the study sample sizes; and a summary of the analysis methods employed to identify

associated loci. Blood cell index names are defined in Table S1.

See also Figures S1 and S2.
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with red blood cell traits, 1,040 (38%) exclusively with white

cell traits, and 570 (21%) exclusively with platelet traits. Only

five common variants (at ZFP36L2/THADA, SH2B3, HBS1L,

PRTFDC1, and GCKR) were associated with traits across all

six trait classes defined in Table S1.

Properties and Biological Significance of Associated

Variants

To evaluate the representation of classes of genetic variants

across the allele frequency spectrum, we annotated variants

with their most severe consequence on GENCODE transcripts

using VEP (McLaren et al., 2016). Variants predicted to have se-

vere consequences (missense, frameshift, stop gained, start lost

variants; Table S4) were highly enriched in the rare and low-fre-

quency ranges, consistent with observations from large-scale

sequencing projects (UK10K Consortium et al., 2015) and nega-

tive selection against variants affecting protein function (Fig-

ure 3C). Phenotypic effect sizes (the absolute additive change

in trait mean measured in SD per allele) decreased with

decreasing severity of the variant consequence (p = 2.2 3

10 16, Jonckheere-Terpstra test for trend in absolute value of

effect size with VEP impact; Figure 3D). For instance, missense

changes were overrepresented in the rare frequency range

(p = 9.83 10 29, Pearson’sc2 test) and displayed larger absolute

effect sizes compared to non-missense variants (median 0.063

SD versus 0.035 SD, p = 2.5 3 10 16, Mann-Whitney-Wilcoxon

test). There were also significant differences in median pheno-

typic effect sizes between variants mapping to five distinct reg-

ulatory states inferred from genome segmentations based on six

histone marks in matched cells. Variants mapping to enhancer

and promoter regions had larger median effect sizes than those

mapping to other regulatory classes (Figure 3E).

Curated genes known to cause rare inherited Mendelian blood

disorders (Greene et al., 2016; Westbury et al., 2015) were en-

riched among genes containing conditionally significant associ-

ations between variants altering protein sequence (missense,

frameshift, stop gained, start lost variants) and blood indices of

cell types matched to the disorders. For instance, we detected

a 21.3 (95% confidence interval [CI]: 5.8–52.0) fold enrichment

(FE) of Mendelian genes for bleeding, thrombotic and platelet

disorders in the platelet-associated genes, a 34.0 FE (95% CI:

11.4–72.1) of genes carrying mutations for Mendelian diseases

of the red blood cells in red cell genes and a 6.8 FE (95% CI:

2.2–15.6) of Mendelian genes for primary immune disorders in

myeloid white cell genes. The enrichment overlaps included a

known pathogenic missense variant (Landrum et al., 2016) in

myeloperoxidase deficiency (MPO) (Romano et al., 1997), and

we identified additional known pathogenic variants in uncurated

genes including CX3CR1 (HIV progression) (Faure et al., 2000)

and hemochromatosis type 1 (HFE) (Adams et al., 2005) (Table

S4). We also found rare missense variants in Mendelian disorder

genes that had not previously been associated with blood cell

indices (Table S3) and/or where no pathogenic variants have

been recorded in ClinVar. For example, missense variants in

Figure 2. Summary of Genetic Associations with the 36 Blood Cell Indices

AManhattan plot summarizing genome-wide phenotypic associations over 36 indices. Each dot corresponds to a variant. Its x coordinate represents its genomic

position and its y coordinate represents the maximum -log10 (p value) for association over all phenotypes. Variants with -log10 (p value) <6 have been removed for

clarity. The yellow horizontal line at p = 8.31 3 10 9 represents the GWAS significance threshold. Sentinel variants are colored green if their associations (or

associations with their proxies) have been previously reported and are colored red otherwise.

See also Table S3.
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GMPR, TMC8, and RIOK3 were associated with reticulocyte

counts.

More generally, the 158 variants predicted to alter protein

sequence (Table S4) are of interest because of their potential

medical value. We focused on rare (MAF < 1%) protein-altering

variants because they can be more reliably linked to causal

genes. For red blood cell indices, we found 14 missense

variants and one frameshift variant (in SPHK1), only one of

which (rs116100695) was previously identified as pathogenic.

rs116100695 is a rare missense variant in PKLR causing red

cell pyruvate kinase deficiency, a common cause of hereditary

nonspherocytic hemolytic anemia (Kanno and Miwa, 1991).

Some of the other variants are in genes previously associated

with hereditary anemias. For example, a rare missense variant

(rs201514157) in SPTA1was associated with reticulocyte count,

and a rare missense variant (rs202099525) in PIEZO1 was asso-

ciated with mean corpuscular hemoglobin concentration. Simi-

larly we identified 11 rare protein-altering variants associated

with platelet indices, ten of which were missense variants and

one a nonsense variant (in KALRN). These include variants

from regions previously identified to contain common weak-

effect variants (IQGAP2, JAK2, SH2B3, and TUBB1) but also

from three gene regions not previously identified by GWAS

(CKAP2L, PLEK, and TNFRSF13B).

We identified 11 rare protein-altering variants associated with

white cell traits, including ten missense variants in regions previ-

ously associated (CEBPE,CXCR2, IL17RA, S1PR4), as well as in

novel genes not previously known to play a role in hematological

processes. These findings demonstrate roles in leukocyte for-

mation and/or function for ALOX15, AMICA1, and PLEK. Finally,

some rare missense variants had pleiotropic effects across cell

types. For instance, the rare missense variant in TNFRSF13B

(rs72553883) causing common variable immunodeficiency and

selective immunoglobulin A deficiency (Castigli et al., 2005)

was associated with platelet, myeloid white cell and lymphoid

white cell indices (Table S4).

A C

D

B E

Figure 3. Distribution of Genetic Effects and Variant Consequences

(A) Number of conditionally independent genetic associations categorized by blood cell index and by MAF range.

(B) Summary of sizes of subsets of sentinel variants categorized by cell types of associated indices, showing that most associations are cell-type-specific. Each

bar counts the number of sentinel variants associated with and only with the blood index class(es) shown. (mRBC, Mature RBC; iRBC, Immature RBC; Lymph,

Lymphoid WBC; Comp, Compound WBC; All, Intersection of all blood index classes. ‘‘Other’’ counts variants uncounted by the other bars.) See Table S1 for

blood index classification.

(C) Bar plot showing the proportions of variants categorized by VEP consequence stratified by derived allele frequency (DAF) range.

(D and E) Violin plots showing the distribution of the absolute value of the estimated effect size stratified by VEP impact categories (D) or cell-matched chromatin

segmentation states (E). p values correspond to Mann-Whitney-Wilcoxon tests comparing the distributions indicated.

See also Table S4.
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Overall, these results expand our knowledge of the genes and

regulatory regions controlling blood cell biology and function.

For rare variants, there were too few minor allele homozygotes

to estimate precisely genotypic effects on phenotype, even

across >170,000 individuals. However, the magnitude of some

rare heterozygote effects suggests that the corresponding

homozygote effects could be clinically relevant. Indeed, it is

possible that effects of some homozygotes aremore than double

those of corresponding heterozygotes depending on the degree

of loss or gain of function, possible compensatory pathways,

and stress or demand for adaptation in response to injury or

insult.

Allelic Architecture of Hematological Indices

The comprehensive nature of this study allows us to draw more

general inferences about the allelic architecture of hematological

indices as an exemplar class of complex human traits. Our anal-

ysis had at least 80% power to detect associations explaining

0.0265%of trait variance, which could be attained by a per-allele

additive effect as small as 0.023 phenotypic SD for common

(MAFR5%) variants and 1.154 SD for variants at the lower limit

of the frequency range we considered (MAF = 0.01%). No com-

mon or low-frequency variant had an estimated absolute effect

size >0.5 SD, suggesting an upper boundary on phenotypic

effect sizes for variants in these frequency classes. The relation-

ship between allele frequency and the absolute value of the

estimated effect size for the sentinel variants could in principle

be explained by differential winner’s curse by allele frequency

(Figure 4A). However, the strength of the signal strongly sug-

gests natural selection against variants with large effects.

Conversely, associations with large phenotypic effects were

overrepresented among rare variants (p value = 1.58 3 10 77,

Pearson’s c2 test), with 21 rare sentinel variants having an esti-

mated effect size >0.5 SD (median MAF = 0.09%), five of which

had effects greater than 1 SD (Table S4). These correspond to

effects on traits of 2.73 g/dl, 3.77 fL (femtoliters), 51 3 109/L,

and 1.37 3 109/L for hemoglobin concentration (HGB), mean

corpuscular volume (MCV), and platelet and neutrophil counts,

respectively. The effect sizes seen in heterozygotes are suffi-

ciently large to cause disease when carried in homozygosis.

Using the LD score regression (Finucane et al., 2015)

approach to polygenic modeling, we estimated that common

autosomal genotypes explained between 18% and 30% of vari-

ance in platelet indices, between 10% and 28% of variance in

red cell indices, and between 5% and 21% of variance in white

cell indices (Figure 4B). Conditionally significant coding variants

A B

C D

Figure 4. Allelic Architecture of Blood Cell Indices

(A) Scatterplot showing the relationship between estimated derived allele frequency (DAF) and the absolute value of the estimated effect size for the sentinel

variants. The inset gives the same plot on the logit/log scales. Only associations annotated with an ancestral allele are shown.

(B) Scatterplot of LD score estimated heritability (due to common variants) against the (unadjusted) phenotypic variance explained by the conditionally significant

variants in a multiple regression model, colored according to index type.

(C) A barplot showing the LD score estimated heritability due to common variants (upper limit of gray bars) and the distribution of the unadjusted proportion of

phenotypic variance explained (R2) by the conditionally significant variants grouped by genomic location (range of color fills).

(D) The same plot for variants grouped by cell-matched chromatin segmentation states.

See also Table S4.
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explained between 0.2% and 3.7% of trait variance (R2 unad-

justed for winner’s curse), while intronic variants, variants near

genes, and intergenic variants explained between 1.2% and

18.0%, between 0.6% and 6.7%, and between 0.5% and

6.4% of trait variance, respectively (Figure 4C). Interestingly,

conditionally significant variants associated with mean platelet

volume (MPV) explain a slightly larger proportion of trait variance

than the polygenic common-variant estimate of heritability made

by LD score. This suggests that the low frequency and rare var-

iants we discovered contribute more to heritability than the un-

discovered common variants. The extent of the winner’s curse

effect will need to be assessed when comparable datasets

become available (e.g., the remaining  350,000 UK Biobank

participants), but if the effect is weak, we may have identified

almost all common variants with non-negligible effects ass-

ociated with MPV. However, as a substantial proportion of the

common-variant heritable variance of most blood cell indices re-

mains unexplained by the conditionally significant genetic

variants, it is likely that many more common variants of small

effect remain to be discovered. Moreover, larger studies are

also likely to identify even rarer variants with stronger effects,

which will be clinically valuable.

Finally, we estimated the proportion of the heritable compo-

nent of each blood cell index that was explained by the polygenic

signal across different genome regulatory domains, as defined

by chromatin segmentation states in the relevant cell types

(Carrillo de Santa Pau et al., 2016). We found that variants lying

in enhancers explained 19%–46% of heritable variation, with

similar estimates for transcribed regions (15%–48%), and lower

estimates for promoters (4%–30%) and silencers (3%–15%).

Additionally, we estimated the variance explained by the condi-

tionally significant variants using multiple regression, showing

that the identified signals are distributed across regulatory states

(Figure 4D). To understand the extent to which these patterns

may be driven by cell-type-specific regulatory elements, we

used a robust non-parametric analysis approach to test the

significance of enrichments of each set of summary statistics

against cell-type matched and cell-type discordant chromatin

segmentation states (Iotchkova et al., 2016a). Active enhancer

regions defined by H3K4me1/H3K27ac histone modifications

(E9, Figure 5) demonstrated striking patterns of cell-type speci-

ficity of enrichments compared to those defined by other chro-

matin states. For example, we saw up to 15-fold enrichment of

red-cell associations in corresponding active enhancer regions

and up to 10-fold enrichment for platelet signals in megakaryo-

cyte (the platelet progenitor cell) enhancers. There was also sta-

tistically significant evidence for depletion of associated variants

in transcriptionally inactive regions.

Regulatory Consequences of Blood-Cell-Associated

Variants

The linking of regulatory variants to their effector genes and

mechanisms continues to be a challenge for the complex traits

community. Public resources that annotate sequence variation

facilitate the task through overlap with molecular traits including

cell-type-specific chromatin states and transcription factors

(Roadmap Epigenomics Consortium et al., 2015), gene expres-

sion quantitative trait locus datasets (eQTL) (GTEx Consortium,

2015), or, more recently, annotation of physical interactions be-

tween different regions of the genome (Hughes et al., 2014).

However, as the fraction of the genome that is annotated con-

tinues to increase, so does the risk of non-functional (random)

overlap. The intersection of genetic and regulatory data at the

level of individual genetic variants allows formal modeling of

the probability that a cellular or organismal trait ‘‘colocalizes’’

with its molecular counterpart, thus allowing the robust assign-

ment of candidate genes and functional mechanisms to GWAS

variants. For example, in a companion paper by the BLUEPRINT

project, we have shown that only  25% of disease associations

that were in high LD (r2R 0.8) with a given molecular event had a

high probability (>99%) of colocalization (Chen et al., 2016).

The Chen et al. (2016) dataset includes three primary human

cell types (classical monocytes, neutrophils, and CD4+ naive

T cells) matched to our blood indices. We thus accessed sum-

mary statistics generated for gene expression (eQTL), mRNA

splicing (sQTL), and histone modifications marking enhancers

and promoters (H3K4me1 hQTL and H3K27ac hQTL) and used

summary-data-based Mendelian randomization (SMR) analysis

(Zhu et al., 2016) to test for colocalization of signal between mo-

lecular and blood cell index GWAS in matched cell types

(MONO#, NEUT#, and LYMPH#) (Figure 6A).

Across all the three cell-types and the four QTL datasets, there

were 276 cell trait variants that colocalized with at least one

molecular QTL in the corresponding cell type, indicating a shared

genetic influence on the two phenotypes (p value HEIDI > 0.05;

Table S6). As in the Chen study, only 30% of overlapping asso-

ciations detected resulted in a robust colocalization. Overall,

we can thus assign a putative functional interpretation to  10%

of all sentinel variants. Only 47% of colocalizing signals involved

changes in gene expression or mRNA splicing (126 unique

genes), indicating likely effector genes underpinning associa-

tions. These include disease-associated variants (e.g., an eQTL

for SLC22A5 associated with Crohn’s disease and a sQTL for

GSDMB associated with a range of autoimmune diseases) (Fig-

ures 6B and 6C). The remaining 53% of signals involved histone

modifications, indicating a regulatory change not associatedwith

detectable expression changes in our data. Interestingly, 24

instances involving both gene expression and histone modifica-

tions at closely located variants allow us to assign putative regu-

latory elements to their effector genes, as illustrated by the case

of the JAZF1 locus (Figure 6B). Overall, these examples show

how genetic variants affect cellular traits and complex disease

through molecular mechanisms of gene regulation.

Causal Contribution of Hematological Trait Variation to

Common Complex Diseases

Patients with complex disease often display abnormal blood cell

index levels, but it is not always clear whether these reflect etio-

logical roles of hematological pathways or are a consequence of

disease. As pharmacological modulation of blood cell indices

advances, identifying shared causal pathways between these

indices and complex diseases could provide new therapeutic

opportunities. Mendelian randomization (MR) uses genetic vari-

ants to estimate causal associations, reducing the potential

for confounding and reverse causation that limit observational

studies.
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We conducted a multivariable MR analysis to reassess epide-

miological correlations between blood cell indices and a range

of human complex diseases and to identify shared causal

pathways. Themultivariable approach is advantageous because

it ensures that results for one index are conditional on (i.e.,

control for covariation in) all other indices. For this analysis, we

retrieved publicly available summary statistics for six autoim-

mune, three cardiometabolic, and five neuropsychiatric diseases

(STAR Methods) and used genetic variants associated with 13

main hematological indices. For each index-disease pair, we

estimated the unconfounded increase in the odds ratio of

disease per unit change (in SD) in the index. We applied a multi-

ple testing correction for 182 disease-index comparisons

(Figure 7).

Figure 5. Enrichment of Trait Associations within Regulatory Regions

Odds ratios (bar heights) and 95% confidence intervals (whiskers) for enrichment of blood-index associations with chromatin segmentation states from blood

cells. P values for significance are obtained from a generalized linear model, modeling a threshold on the GWAS test statistic as a Bernoulli response while

controlling for MAF, distance from gene, and number of LD proxies. The cell types are shown from left to right in each block as follows: megakaryocyte (i.e., the

platelet progenitor, purple), erythroblast (i.e., the red cell progenitor, red), monocyte (orange), eosinophil (orange), neutrophil (orange), naive B cell (light blue), and

T cell (light blue).

See also Table S4.
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Wedetected significant associations between white blood cell

indices and autoimmune diseases (Figure 7C). The strongest

was a positive association between eosinophilic indices and

asthma (asthma odds ratio [OR] per SD increase in eosinophil

count = 1.71; 95% CI: 1.53–1.95; p = 4.0 3 10 22). This finding

corroborates evidence from known associations with eosinophil

counts at confirmed asthma loci, such as IL5, IL33, and IL1R1,

as well as our discovery that the region around TSLP (another

known asthma locus) contains three independent signals associ-

ated with eosinophil count (Table S4). There was weaker evi-

dence of a positive association between asthma and neutrophil

indices (p = 2.74 3 10 5), as well as inverse associations with

monocyte (p = 1.24 3 10 4) and lymphocyte (p = 7.56 3 10 5)

counts. There was also strong evidence for a positive associa-

tion between eosinophilic indices and rheumatoid arthritis

(OR = 2.34, 95% CI: 2.01–2.74; p = 1.84 3 10 27), a signal that

was robust to a range of sensitivity analyses, including removal

of the MHC region (Table S7). Other loci containing alleles

robustly associated with higher eosinophil count and increased

risk of rheumatoid arthritis were COG6, SPRED2, RUNX1, and

the highly pleiotropic ATXN2/SH2B3/BRAP region (Table S4).

As with eosinophils, we saw directionally discordant disease

associations with lymphocyte count, which had positive associ-

ations with schizophrenia (OR = 1.17, 95% CI: 1.10-1.24; p =

1.1 3 10 7), multiple sclerosis (OR = 1.28, 95% CI: 1.14–1.45;

p = 6.6 3 10 5), and coronary heart disease (CHD) (OR = 1.10,

95% CI: 1.04–1.15; p = 1.8 3 10 4), as well as inverse associa-

tions with asthma (OR = 0.81, 95%CI: 0.73–0.90; p = 7.63 10 5)

and celiac disease (OR = 0.75, 95% CI: 0.64–0.87; p = 2.6 3

10 4). However, only the associations with multiple sclerosis

and celiac disease were robust to removal of the MHC region,

suggesting that genes within MHC predominantly drive the links

between schizophrenia, coronary artery disease, and asthma.

Finally, there was a weak positive association of CHD risk with

Figure 6. Colocalization between Cellular and Molecular Traits

(A) Illustrates the models tested using SMR, as well as the number of variants that were significant for both the cellular andmolecular trait at a p value threshold of

8.4 3 10 6 that show colocalization (PHEIDI > 0.05) between the cellular and the molecular trait and the overlap of colocalized marks between the four marks

across the three cell types.

(B and C) Regional plots for the colocalization result in the (B) JAZF1, (C) SLC22A5I and GSDMB loci for monocytes and T cells. The gray squares represent the

p value distribution for the corresponding (monocyte and lymphocyte) blood cell index. The black triangles represent the GWAS variant that colocalizes with the

eQTL (pink diamond), hQTL (light blue diamonds), and sQTL (gold diamond). The dark blue diamonds represent QTL in the region that do not show colocalization.

The crosses represent the regional QTL p value distribution.

See also Table S6.
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reticulocyte indices (OR = 1.12; 95% CI: 1.07–1.17; p value =

1.7 3 10 6) and a weak inverse association of CHD risk with

MPV (OR = 0.92; 95% CI: 0.88–0.96; p = 8.1 3 10 5), both of

which were robust to all sensitivity analyses (Figure 7).

These analyses have suggested aweak but significant positive

association between hemolysis and CHD risk. This may prompt

re-evaluation of the risk of arterial thrombosis for patients with

on-going hemolysis as has been done for venous thrombosis.

Perhaps, most strikingly the association between eosinophil

count and rheumatoid arthritis may trigger more detailed genetic

and clinico-epidemiological studies to dissect the provoking and

perpetuating pathology of this inflammatory disease.

DISCUSSION

Themolecular programs that control hematopoietic stem cell dif-

ferentiation and proliferation are incompletely understood (Notta

et al., 2016; Paul et al., 2015). Clues to thesemolecular pathways

have traditionally come from discoveries of highly penetrant mu-

tations associated with inherited disorders of the hematopoietic

system, somatic mutations underlying blood cell cancers, and

from functional screens in model organisms (Boatman et al.,

2013; Ganz and Nemeth, 2012). More recently, such studies

have been complemented by high-throughput molecular and ge-

netic analyses of common biological variation (Vasquez et al.,

2016). Our study benefited from a substantial increase in statis-

tical power compared to previous GWAS, driven by improve-

ments in study design and data capture, including the use of

dense WGS-imputation panels and the accurate adjustment of

phenotypes for biological and technical covariates.

The new associations, including a large number of rare and

low-frequency coding variants, define a detailed atlas of genes

and regulatory regions influencing blood cell indices with

cell-type-specific effects. There were several rare variants in
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Figure 7. Causal Associations with Common Diseases

(A–C) A forest plot showing the results of the multivariable Mendelian randomization (MR) analysis conducted on 13 blood cell indices versus fourteen common

diseases. Colored diamonds represent the significant trait-disease association at our Bonferroni corrected p value threshold of 2.73 10 4with uncolored circles

denoting non-significant results. Each diamond/circle represents the estimated unconfounded causal odds ratio of disease risk per SD increase of the blood cell

index, adjusted for all other blood cell indices tested. The size of the shape is inversely proportional to the SE and the whiskers denote 95% confidence intervals.

Forest plots are presented for (A) platelet indices, (B) immature and mature red cell indices, and (C) myeloid and lymphoid white cell indices.

See also Table S7.
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genes known to carry mutations causing severe disorders. For

example, rs149000560, a rare missense variant associated

with immature red cell indices, lies in FERMT3, the gene respon-

sible for the leukocyte adhesion deficiency-1/variant syndrome

(Kuijpers et al., 2009). Loss of function mutations in CKAP2L

associated with platelet traits cause the autosomal-recessive

Filippi syndrome characterized by microcephaly, pre-, and

post-natal growth failure, although case series do not describe

hematological abnormalities (Hussain et al., 2014). CKAP2L is

associated with microtubules in dividing cells and the associa-

tion of a mutation in this gene with platelet phenotype and

cortical development reflects the role of tubulin function in meg-

akaryopoiesis and neuronal migration (Moon and Wynshaw-Bo-

ris, 2013). PLEK (encoding pleckstrin) is not known to carry rare

pathogeneticmutations but it is a crucial protein for platelet func-

tion. Platelets from mice lacking pleckstrin exhibit a marked

defect in exocytosis of delta and alpha granules, alphaIIbbeta3

activation, actin assembly, and aggregation (Lian et al., 2009).

Other variants point to previously unknown genes. For instance,

the biological functions of TMC8 and RIOK3 in developing

erythroid cells are not understood but their associations with

specific blood cell phenotypes may inform future experimental

studies. For example,RIOK3 has been associated with organiza-

tion of the actin cytoskeleton, as a component of pre-40S pre-ri-

bosomal particle and as mediating phosphorylation of MDA5.

Finally, other rare variants were potentially regulatory, map-

ping to intronic regions of genes not expressed in the relevant

cell types. For instance, there was a series of intronic variants

associated with MCV in NPRL3, LUC7L, ITFG3, and AXIN1

genes that lie within 1Mb of the alpha globin gene. Such variants

may be in LD with a deletion of the respective variants of alpha

globin (HGA), but it is also possible that the respective variants

are disrupting long-range enhancers of alpha-globin.

One intriguing set of associations with multiple hemato-

poietic lineages was of variants in genes involved in sphingosine

signaling. A frameshift variant in the sphingosine-1-phosphate

kinase gene (S1PK) and a missense variant in the sphingosine-

1-phosphate receptor gene (S1PR2), which is expressed during

erythroid development, were associated with altered reticulo-

cyte count. Missense alleles in S1PR4 are associated with

reduced neutrophil, monocyte, and eosinophil counts consis-

tent with previous reports (CHARGE Consortium Hematology

Working Group, 2016). Taken together, these data suggest

sphingosine-1-phosphate may be involved with the release

and/or survival of red cells as well as white cells.

Variation in blood cell indices has been linked to diseases with

high population burdens, including chronic complex conditions

such as autoimmune disease, susceptibility to infection, and

respiratory and cardiovascular illnesses. Here, we used Mende-

lian randomization inference to unravel causal mechanisms

underlying reported index-disease correlations and applied a

range of sensitivity analyses. Our genetic evidence for a causal

role of eosinophilic pathways in asthma supports the pathophys-

iological and pharmacological evidence that eosinophils are

key effector cells in asthma pathogenesis (Zijlmans et al.,

2008). More surprising was the strong evidence for a positive as-

sociation between eosinophilic indices and rheumatoid arthritis.

Unexplained eosinophilia has been reported in rheumatoid pa-

tients, and the magnitude of eosinophilia has been associated

with disease severity or activity, but little attention has been

given to a pathogenetic role of eosinophils in rheumatoid

arthritis. Our data support recent hypotheses linking eosinophil

activation in rheumatoid processes (Rosenstein et al., 2014).

Eosinophilic indices were also weakly positively associated

with both celiac disease (p = 3.28 3 10 5) and type 1 diabetes

(p = 7.66 3 10 5), highlighting a key role of eosinophils in path-

ways influencing the development of a range of autoimmune

diseases.

Immune system dysfunction has been suspected to play a role

in schizophrenia, a hypothesis supported by abnormal lympho-

cyte levels seen in schizophrenic patients but lacking support

from longitudinal data (Miller et al., 2013). Our finding of shared

genetic links between lymphocyte count and schizophrenia at

the MHC region through multiple independent pathways may

support a pathogenic role for immune dysfunction in develop-

ment of schizophrenia, exemplified by the recent identification

of key complement factor genes (C4A,C4B) as drivers of schizo-

phrenia (Sekar et al., 2016). The positive association of lympho-

cyte count with multiple sclerosis is also confirmatory of the

assumed pathogenetic role of T cells and is supported by the

strong enrichment of genes involved in T cell activation or prolif-

eration among known multiple sclerosis loci (Sawcer et al.,

2011).

Themost intriguing observations were the weak positive asso-

ciation of CHD risk with reticulocyte indices and theweak inverse

association of CHD risk with MPV. Reticulocyte count and per-

centage are indicators of erythrocyte turnover and higher levels

indicate increased hemolysis, which leads to increased levels

of circulating free hemoglobin. Our data were consistent with

previous studies that have shown that reduced clearance of

free hemoglobin in carriers of the haptoglobin Hp2-2 allotype is

associated with more oxidative stress and inflammation (Asleh

et al., 2005; Kristiansen et al., 2001) and is associated with a

higher risk of CHD events in type 1 diabetes (Ijäs et al., 2013;

Levy et al., 2002). Moreover, it is also well established that free

hemoglobin in blood substitutes leads to reduced nitrous oxide,

increased vasoconstriction, and a higher risk of acute myocar-

dial ischemia (Natanson et al., 2008). Our data support the

hypothesis that hemolysis and risk of CHD are influenced by

shared causal pathways. However, the pathways through which

increased MPV could be protective of atherosclerotic disease

remain to be determined, as does the apparent contradiction

with prospective observational studies, which have reported

associations in the opposite direction (Sansanayudh et al.,

2014).

Finally, we were also able to reduce the likelihood of causality

for several previously reported observational associations be-

tween blood cell indices and risks for various complex diseases,

including previously reported associations of total white blood

cell, granulocyte, and neutrophil counts with CHD risk (Wheeler

et al., 2004) and type 2 diabetes (Gkrania-Klotsas et al., 2010),

and red blood cell count associations with CHD risk (Schaffer

et al., 2015) and red cell distribution width andmean corpuscular

volume with type 2 diabetes (Engström et al., 2014). This sug-

gests that the original observational studies were likely to be

confounded.
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In conclusion, the discovery of a substantial number of rare al-

leles with large effect sizes highlights the potential of large-scale

population studies to identify variants on a continuum between

extremely rare highly penetrant mutations driving Mendelian dis-

orders and common variants of weak effect typically identified by

GWAS. Our results are expected to boost current efforts to iden-

tify and assess possible novel etiologies and therapeutic targets

for hematological diseases. Some of the variants discovered

have phenotypic effects of large magnitude, perhaps sufficient

to cause disease if carried in homozygosis. Carrier statusmay in-

fluence the interpretation of clinical tests of blood cell indices,

and the variants and loci could be incorporated into the current

diagnostic panels for inherited anemia and thrombocytopenia

after biological validation of these results (Lentaigne et al.,

2016; Roy et al., 2016).
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KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information may be directed to the Lead Contact, Nicole Soranzo (ns6@sanger.ac.uk). Results, including genome-wide

univariable summary statistics, are available from http://www.bloodcellgenetics.org.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We analyzed data from three large population studies with measurements of blood cell indices and imputed genome-wide geno-

types - the UK Biobank study, the UK BiLEVE study (a selected subset of UK Biobank) and the INTERVAL study. Although the UK

BiLEVE study is a subset of the UK Biobank study, we often refer to the UK BiLEVE study separately, since we conducted asso-

ciation analyses of UK BiLEVE participants as a distinct dataset due to their selected nature and a slightly different genotyping

array.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

flashpca (Abraham and Inouye, 2014) https://github.com/gabraham/flashpca

R 3.1.2 (R Core Team, 2014) https://www.r-project.org/

biomaRt Bioconductor https://bioconductor.org/packages/release/bioc/html/biomaRt.html

data.table The R Foundation https://cran.r-project.org/web/packages/data.table/index.html

doMC The R Foundation https://cran.r-project.org/web/packages/doMC/index.html

dplyr The R Foundation https://cran.r-project.org/web/packages/dplyr/index.html

foreach The R Foundation https://cran.r-project.org/web/packages/foreach/index.html

GenomicRanges Bioconductor https://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

Hmisc The R Foundation https://cran.r-project.org/web/packages/Hmisc/index.html

openxlsx The R Foundation https://cran.r-project.org/web/packages/openxlsx/index.html

RcppEigen The R Foundation https://cran.r-project.org/web/packages/RcppEigen/index.html

reshape2 The R Foundation https://cran.r-project.org/web/packages/reshape2/index.html

rhdf5 Bioconductor https://www.bioconductor.org/packages/release/bioc/html/rhdf5.html

stringr The R Foundation https://cran.r-project.org/web/packages/stringr/index.html

tidyr The R Foundation https://cran.r-project.org/web/packages/tidyr/index.html

Hmisc The R Foundation https://cran.r-project.org/web/packages/Hmisc/index.html

MASS The R Foundation https://cran.r-project.org/web/packages/MASS/index.html

ggplot2 The R Foundation https://cran.r-project.org/web/packages/ggplot2/index.html

lubridate The R Foundation https://cran.r-project.org/web/packages/lubridate/index.html

mgcv The R Foundation https://cran.r-project.org/web/packages/mgcv/index.html

RColorBrewer The R Foundation https://cran.r-project.org/web/packages/RColorBrewer/index.html

PLINK v1.9 (Chang et al., 2015) https://www.cog-genomics.org/plink2

SHAPEIT3 (O’Connell et al., 2016) https://jmarchini.org/software/

PBWT (Durbin, 2014) https://imputation.sanger.ac.uk/

BOLT-LMM (Loh et al., 2015) https://data.broadinstitute.org/alkesgroup/BOLT-LMM/

METAL (Willer et al., 2010) http://csg.sph.umich.edu//abecasis/Metal/

SMR (Zhu et al., 2016) http://cnsgenomics.com/software/smr/

Other

Clinvar database (Landrum et al., 2016) https://www.ncbi.nlm.nih.gov/clinvar/

Variant Effect Predictor (McLaren et al., 2016) http://www.ensembl.org/info/docs/tools/vep/index.html

PhenoScanner (Staley et al., 2016) http://www.phenoscanner.medschl.cam.ac.uk/phenoscanner
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The UK Biobank Study

The UK Biobank study is a prospective cohort study of 502,682 participants recruited at 22 assessment centers across the UK

between 2006 and 2010 (Sudlow et al., 2015). Participants aged between 40 and 69 were selected fromGP lists and invited to attend

a center, where blood, urine and saliva samples were taken, physical measurements weremade (eg, blood pressure, anthropometric

measurements), and extensive health and lifestyle questionnaires were completed.

DNA was extracted from buffy coat at UK Biocenter (Stockport, UK) using a Promega Maxwell 16 Blood DNA Purification Kit

(AS1010). Samples with sufficient DNA concentration and purity (as measured by 260/280 ratio) were aliquoted and 50 mL were ship-

ped for genotyping at Affymetrix (Santa Clara, Ca, USA). A bespoke sample selection algorithm was used to ensure that the samples

on each plate were from participants from a range of recruitment centers.

The UK BiLEVE Study

The UK Biobank Lung Exome Variant Evaluation (UK BiLEVE) study involves a subset of 50,008 participants from UK Biobank,

selected to investigate the genetic determinants of smoking behavior, lung function and chronic obstructive pulmonary disorder

(COPD) (Wain et al., 2015). The UK BiLEVE participants included equal numbers of males and females selected from those who

self-reported being of white European ancestry, had sufficient spirometric measurements to determine lung function measures,

were either never smokers or ‘heavy smokers’ (mean 35 pack years), and had either poor lung function, average lung function or

high lung function. As the UK BiLEVE participants are a subset of the UK Biobank study, DNA extraction, aliquoting and shipment

procedures were as described above.

The INTERVAL Study

The INTERVAL study is a prospective cohort study of approximately 50,000 participants nested within a pragmatic randomized trial

of blood donors (Moore et al., 2014). Between 2012 and 2014, blood donors 18 years and older were consented and recruited from

25 NHSBT (National Health Service Blood and Transplant) static donor centers across England. Participants are predominantly

healthy individuals since people with major disease (myocardial infarction, stroke, cancer etc) are ineligible for donation, as are those

who report being unwell or having had recent illness or infection.

Participants completed online questionnaires containing basic lifestyle and health-related information, including self-reported

height and weight, ethnicity, current smoking status, alcohol consumption, doctor-diagnosed anemia, use of medications (hormone

replacement therapy, iron supplements) and menopausal status.

DNA was extracted from buffy coat at LGC Genomics (UK) using a Kleargene method and samples of sufficient concentration and

purity were aliquoted for shipment to Affymetrix for genotyping. A modified version of the sample selection algorithm used for the UK

Biobank study was implemented to ensure that samples on each plate came from participants with a mix of recruitment center,

recruitment date, regional hub and gender.

The INTERVAL study was approved by the Cambridge (East) Research Ethics Committee and UK Biobank was approved by the

North West Multi-center Research Ethics Committee (MREC). Informed consent was obtained from all participants.

METHOD DETAILS

The UK Biobank and UK BiLEVE Affymetrix Axiom Genotyping Arrays

The UK Biobank Affymetrix Axiom array is a customized genotyping array comprising 845,485 probesets assaying 820,967 single

nucleotide variants (SNVs) and short insertions/deletions (indels; http://www.ukbiobank.ac.uk/scientists-3/uk-biobank-axiom-

array/). The array includes an ‘‘exome’’ component, designed to capture variants likely to have transcriptional consequences (non-

synonymous, splice altering, truncating), and a ‘‘genome-wide association study (GWAS) scaffold’’ selected to ensure good quality

genome-wide imputation of variants that are common (minor allele frequency [MAF] > 5%) or low-frequency (MAF = 1%–5%) in

European populations. The exome component, which includes approximately 130,000 (predominantly rare) variants, was designed

using data from three large exome sequencing projects: the NHLBI Exome Sequencing Project (Tennessen et al., 2012), the Exome

Aggregation Consortium (ExAC) (Minikel et al., 2016) and the UK10K project (UK10K Consortium et al., 2015). Additional rare variants

were included in cardiac disease and cancer predisposition genes, as well as other variants from the Human Gene Mutation Data-

base (HGMD) (Stenson et al., 2014).

The genome-wide imputation scaffold was designed by selecting tagging variants from Affymetrix databases using a custom

algorithm. In addition to 246,000 variants from the 1000 Genomes CEU population designed to tag common variants in European

populations, an additional 103,000 variants from additional European 1000 Genomes populations were added to boost imputation

of common variants, as well as a further 280,000 variants to boost imputation in the UK population in the 1%–5%MAF range. Mean r2

between observed and imputed genotypes for common variants was estimated to be 0.92, while for low-frequency variants it was

0.79 (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155580), suggesting that the array was able to impute lower frequency vari-

ants with greater accuracy than previous GWAS arrays typically could.

The remaining content on the array includes markers of specific relevance, including markers related to diseases and traits

(Alzheimer’s, autoimmune and inflammatory, blood phenotypes, cancers, cardiometabolic, neurological disease), dense coverage

of selected genomic regions (HLA, ApoE, KIR, Y chromosome, mitochondria, copy number variants relevant to certain conditions)
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and other categories (variants related to gene expression, fingerprint markers, tags for Neanderthal ancestry, and pharmacogenetic

markers). Of particular relevance to this study, the array included 2,545 variants related to blood and iron phenotypes, including red

cell blood groups, regulation of hematopoiesis (red blood cells, platelets, white blood cells) and regulation of blood homeostasis iden-

tified from candidate gene studies, GWAS and review of the literature.

The UK BiLEVE Affymetrix Axiom genotyping array preceded the UK Biobank array and was designed similarly (overlapping

content > 95%). Due to the focus of the UK BiLEVE study, their array contained content designed to genotype or tag variants

known or suspected to be related to lung function or disease, COPD, asthma or smoking behavior. In total, the array had

833,090 probesets assaying 807,411 variants. The 50,008 participants in the UK BiLEVE study were genotyped on the UK BiLEVE

array, while the remaining UK Biobank participants and the INTERVAL participants were genotyped on the UK Biobank array.

Genotyping

For all three studies, aliquots were shipped to Affymetrix in 96-well barcoded plates with two empty wells for Affymetrix controls.

Samples were quantified using a PicoGreen-basedmethod to identify plates with high numbers of low concentration samples, which

could be replaced prior to genotyping. Genotyping was performed on the Affymetrix GeneTitan Multi-Channel (MC) Instrument

according to the Affymetrix Axiom 2.0 Assay AutomatedWorkflow. Genotypeswere then called in batches of approximately 50 plates

( 4800 samples) using the Affymetrix Power Tools software to implement the Axiom GT1 algorithm. For the UK Biobank and UK

BiLEVE studies, rare variants (i.e., those with fewer than six minor alleles in a genotyping batch) were recalled using variant-specific

priors to improve performance.

Quality Control (QC) of Genotype Data

For all studies, Affymetrix implemented standard QC procedures during the genotype calling pipeline, excluding samples with poor

signal intensity (dish QC < 0.82) and samples with low call rate (< 97%) based on  20,000 high quality probesets. Variants were

excluded if they had low call rate (< 95%), had more than three clusters (indicative of off-target measurement), had cluster statistics

(Fisher’s linear discriminant, heterozygous cluster strength, homozygote ratio offset) indicative of poor quality genotyping or were

complicated multi-allelic variants that couldn’t easily be called.

QC of UK BiLEVE Genotype Data

As UK BiLEVE participants were genotyped prior to the other UK Biobank participants on a slightly different array, QC of UK BiLEVE

genotyping data was carried out separately by UK BiLEVE investigators (Wain et al., 2015). Briefly, a total of 50,561 samples were

genotyped in eleven batches. Samples were excluded if they were sex mismatches, unresolvable duplicates (> 98% of alleles iden-

tical by descent [IBD]), heterozygosity outliers (greater than three standard deviations [SD] from the mean), ethnic outliers (greater

than ten SD from the mean on any of the first ten principal components (PCs) generated including all HapMap3 panels (International

HapMap 3 Consortium et al., 2010), or had withdrawn consent. Intentional duplicate pairs and related individuals (IBD > 20%) were

resolved, excluding individuals with the highest number of pairwise relationships then the lowest call rate. After these steps, 48,943

participants remained for analysis.

For variants with multiple probesets, only the probeset with the highest call rate was retained. Variants were additionally excluded

from a batch if they showed within-batch plate effects (p value < 1x10!6) and variants that failed in more than two of the eleven

batches were dropped from the dataset. A total of 782,260 variants remained after QC.

QC of UK Biobank Genotype Data

At the time of submission of this paper, genotyping data were available on the first  150,000 participants from the UK Biobank

study, including the  50,000 participants selected for the UK BiLEVE study. QC of UK Biobank genotyping data from these par-

ticipants, carried out by UK Biobank investigators, has been described in detail elsewhere (http://biobank.ctsu.ox.ac.uk/crystal/

refer.cgi?id=155580). In total, 153,293 samples were genotyped across 33 batches. Samples with high missingness or high het-

erozygosity (accounting for ethnicity) were excluded based on visual inspection of ancestry-specific plots, as were samples from

participants who had withdrawn. A further eight samples who had low heterozygosity that couldn’t be explained by long runs of

homozygosity were also excluded. For variants with multiple probesets, the probeset defined by Affymetrix as ‘‘best’’ was re-

tained. Variants showing batch effects (either within the UK Biobank batches or between UK Biobank and UK BiLEVE batches),

within-batch plate effects, or within-batch deviations from Hardy-Weinberg equilibrium (HWE) in European ancestry samples

defined by principal component analysis (PCA), all at p value < 1x10!12, were filtered from the batches in which they failed.

In total, after these exclusions, data were available for 151,733 participants on 806,466 variants that passed in at least one

batch.

Additional QC of UK Biobank and UK BiLEVE Genotype Data

In addition to the QC steps applied by UK Biobank and UK BiLEVE investigators, we implemented sample filtering on the combined

dataset. We excluded samples with more than 3% missingness, samples with missing phenotypic sex, and samples with sex mis-

matches or dubious sex estimation from the genotyped data. To restrict analyses to participants of European continental ancestry,

we defined a ‘genetic distance’ d (i) between individual i and a hypothetical median ‘‘white British’’ participant using variance

weighted PC scores,
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Where:

m is an index for each of the 15 PCs provided by UK Biobank,

Em represents the eigenvalue corresponding to PC m (i.e., the genetic variance explained by PC m)

Pim represents the score of individual i on PC m

Cm represents themedian score on PCm of participants with self-reportedWhite ancestry (defined as ‘‘British,’’ ’’Irish,’’ ‘‘White,’’ or

‘‘Any other White background’’)

We used a threshold of genetic distance > 50 to identify non-Europeans, which resulted in the exclusion of 7,848 non-European

samples.

To implement further QC steps (heterozygosity analysis, PCA and identification of duplicate samples), a robust set of variants were

derived using the samemethods as UKBiobank, i.e., selecting autosomal variants on both arrays that had passed variant QC in all 33

batches, hadMAFR 2.5%andmissingness% 1.5%, were not indels, were not C/G or A/T variants, andwere not within 23 regions of

known long-range linkage disequilibrium (LD). These variants were then LD-pruned (r2 < 0.1) to obtain an uncorrelated set of variants.

The first fifty PCs were estimated using flashpca (Abraham and Inouye, 2014) and the heterozygosity analysis, which was carried out

in parallel with the ethnic outlier identification using PLINK v1.9 (Chang et al., 2015), identified 3,030 samples that had autosomal

heterozygosity greater than three SD from the mean, 2,667 of which were also ethnic outliers. To identify duplicate samples, we per-

formed identity-by-descent (IBD) analysis using the PLINK Method-of-Moments approach (http://pngu.mgh.harvard.edu/#purcell/

plink/ibdibs.shtml), which identified 19 pairs of duplicate/monozygotic twins (pi_hatR 0.9). All 38 samples were excluded from the

analysis dataset.

Quality control (QC) of INTERVAL Genotype Data

In total, 48,813 INTERVAL samples were genotyped in ten batches. Following standard Affymetrix QC exclusions, within-batch sam-

ple and variant QC was performed. Non-best probesets were excluded to leave a single probeset per variant. As visual inspection of

cluster plots had identified that some variants, particularly rare variants, had minor allele homozygotes incorrectly called due to the

presence of an extreme intensity outlier, we failed variants from a batch if:

d the variant had fewer than ten called minor allele homozygotes;

d the cluster plot contained at least one sample with an intensity at least twice as far from the origin as the next most extreme

sample;

d the outlying sample (s) had an extreme polar angle (< 15$ or > 75$) in the direction of the minor allele.

Prior to further QC of variants within each batch, we excluded duplicate samples and samples that were clearly not of European

ancestry using a set of high-quality autosomal variants, defined as those with:

d MAF > 0.05

d HWE p value > 1x10"6

d r2% 0.2 between pairs of variants.

Duplicate samples were defined as those with bp R 0.9 using the PLINK Method-of-Moments IBD approach and non-Europeans

were defined as those with scores on PC1 or PC2 < 0 following a PCA including INTERVAL samples with 1000 Genomes major

ancestry populations (1000 Genomes Project Consortium et al., 2015).

Variants were then excluded from a batch if they strongly deviated from HWE (p value < 5x10"6), following a Fisher’s exact test for

low-frequency and rare variants (defined as those with a maximum MAF < 0.05 across all ten batches) or a c2 test for common var-

iants. Similarly, variants were excluded from a batch if they had a within-batch call rate < 0.97. Finally, variants were dropped from all

batches if they failed in at least four of the batches due to deviation from HWE, low call rate or Affymetrix variant exclusion criteria.

After merging passing samples and variants across the ten batches, we estimated the level of sample contamination using the

method described by Jun et al. (2012), which examines the relationship between allele frequency and probeset intensity. We

excluded samples with more than 10% contamination, as well as those who had both 3%–10% contamination and ten or more first-

or second-degree relatives (defined as pi_hatR 0.1875). Heterozygosity outliers (heterozygositymore than three standard deviations

away from the mean), samples with missing phenotypic sex and sex mismatches were then also removed, as were variants with a

MAF range greater than 0.05 across all batches, variants that were monomorphic in one or more batches but had MAF > 0.01 in

another batch, and variants that had different minor alleles between batches (only for variants with maximum MAF < 0.475 across

batches).

For IBD analysis and PCA, another set of #100,000 high quality variants was selected using the same criteria described above for

the UK Biobank QC (Figure S3). The global IBD analysis (performed using PLINKMethod-of-Moments approach) revealed 69 pairs of

across-batch duplicates (or monozygotic twins), who were removed from the dataset. A between-study IBD analysis, including the

INTERVAL, UK Biobank and UK BiLEVE studies revealed a further 1100 participants who were in both the INTERVAL and combined
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UK Biobank-UK BiLEVE datasets, so these participants were excluded from the INTERVAL dataset to avoid overlap. The PCA, per-

formed using flashpca without including 1000 Genomes samples, identified a further twelve outliers who leveraged lower PCs (PC 6,

8 and 9) according to a visual check and were therefore excluded from the dataset. The PCA was then re-run to obtain final PCs for

use as covariates in analysis models. 43,059 participants remained in the final dataset.

Variant Imputation

UK Biobank and UK BiLEVE

The pre-imputation variant QC, phasing and imputation conducted on the combined UK Biobank and UK BiLEVE dataset has been

described in detail (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=157020). Briefly, sample and variant QC was performed as

described above, then variants were additionally removed if they:

d were only on the UK BiLEVE array and had failed in more than one (of eleven) UK BiLEVE batches;

d were only on the UK Biobank array and had failed in more than two (of 22) UK Biobank batches;

d were on both arrays and had failed in three or more of the 33 total batches.

Multiallelic variants and variants with MAF < 0.01 were then removed, as were non-autosomal variants. The UK Biobank and UK

BiLEVE study samples were then jointly phased and imputed using a combined 1000 Genomes Phase 3-UK10K panel. Phasing was

conducted using SHAPEIT3 (O’Connell et al., 2016), a modified version of SHAPEIT2 (Delaneau et al., 2013), in chunks of 5,000 var-

iants with an overlap of 250 variants between chunks. Imputation was performed using IMPUTE3, a modified version of the IMPUTE2

software (Howie et al., 2011), in chunks of 2Mb with a 250kb buffer region. Post-imputation, variants with MAF < 0.00001 (1 in

100,000) were filtered from the dataset using QCTOOL (http://www.well.ox.ac.uk/ gav/qctool/), leaving 72,355,667 variants for

analysis in the dataset.

INTERVAL

Prior to imputation, additional variant QC steps were performed to establish a high quality imputation scaffold. We imposed a global

HWE filter of p value < 5x10!6, a call rate filter of 99% over the batches that a variant was not failed in, and a global call rate filter of

75% (effectively ensuring a variant passed in at least eight of the ten batches). Finally we removed all monomorphic variants.

Non-autosomal and multi-allelic variants were removed as part of the QC process and the dataset was then phased using

SHAPEIT3, with the same criteria used for UK Biobank (chunks of 5,000 variants with an overlap of 250 variants between chunks)

and subsequently imputed using the same combined 1000 Genomes Phase 3-UK10K imputation panel described above. Imputation

was performed on the Sanger Imputation Server (https://imputation.sanger.ac.uk), which uses the PBWT imputation algorithm (Dur-

bin, 2014), and analyses whole chromosomes. No imputation quality or variant frequency filters were applied, resulting in 87,696,910

imputed variants in the dataset.

Using whole-exome sequencing (WES) data for 3,976 INTERVAL study participants who were also in our post-QC imputation

dataset, we were able to assess imputation accuracy. We adapted two metrics (Linderman et al., 2014) to compare genotype

data to sequencing data for these purposes. The first was non-reference concordance, which considers all heterozygotes and minor

allele homozygotes in the WES dataset and calculates the proportion seen in the imputed dataset. The second was precision, which

considers all the heterozygous and minor allele homozygotes in the imputed dataset, and calculates what proportion of these calls

was correct according to the WES dataset. For 146 missense, loss-of-function or rare high-impact (beta > 0.5SD) variants that

passed QC in the WES dataset, we observed a median non-reference concordance of 98.6%, 98.8% and 93.9% in common

(MAF > 0.05), low-frequency (MAF > 0.01 and MAF % 0.05) and rare variants (MAF < 0.01) respectively and median precision of

99.5%, 99.3% and 98.5% in common, low-frequency and rare variants respectively.

Phenotype Measurement, QC, and Processing

Variability of Hematological Indices

Westudied 36 hematological traits in individuals of European ancestry selected from theUKBiobank and INTERVAL studies (Figure 1;

Table S1). The traits comprise the main hematological indices of the seven types of cells reported in a standard clinical full blood

count (FBC) analysis and additional variables derived from them (Table S2), measuring properties of mature and immature red blood

cells (twelve indices), platelets (four indices) and myeloid and lymphoid white blood cells (twenty indices). The indices include cell

counts per unit volume of blood (e.g., the counts of the six types of myeloid cells and lymphocytes), ratios of cell counts (e.g., count

of neutrophils as the percentage of myeloid white cells), mean volume of platelets and red cells (MPV and MCV, respectively), pro-

portions of blood volume occupied by cells (e.g., hematocrit) and measurements of the concentration and mass distribution of

cellular hemoglobin (e.g., mean corpuscular hemoglobin [MCH]).

Exploiting extensive metadata on the blood cell index measurements and anthropometric covariates, we performed thorough

quality control to identify and remove sources of technical and non-genetic biological variation, increasing our power to detect ge-

netic associations. Technical covariables such as the time between venipuncture and FBC analysis, FBC instrument drift and cali-

bration events and episodes of malfunction, explained up to 16% of the variance of each index (Figure S1). Further, non-technical

sources of covariation such as age, sex and menopause status were shown to affect blood cell indices strongly, accounting for

up to 40% of variance in the residuals after adjustment for technical factors (Figure S2). We made flexible adjustments for age within
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sex and menopause categories using semi-parametric regression. Additionally, using clinical knowledge, we selected a subset of

measured covariates to screen for association with indices in the UK Biobank dataset. Body mass index and variables measuring

smoking habits and alcohol consumption covariates explained at least 0.5% of variance in one or more of red cell, platelet or white

cell indices after adjustment for age and sex, and were thus included in our adjustments.

Measurement of Blood Cell Indices

Full blood counts weremeasured in UKBiobank and INTERVAL study participants using clinical hematology analyzers at the central-

ized processing laboratory of UK Biocenter (Stockport, UK). Research blood samples for the baseline assays of UK Biobank volun-

teers were collected into 4ml EDTA vacutainers by vacuum draw at the UK Biobank assessment centers and were then stored at 4

degrees centigrade. The samples were transported overnight to UK Biocenter in temperature-controlled shipping boxes.

For the INTERVAL baseline assays, research blood samples were taken from each participant through the satellite pouch of a

blood collection unit, with the venipuncture performed as part of a routine NHSBT whole blood donation (Moore et al., 2014). The

samples for FBC analysis were collected in 3ml EDTA tubes and were transported to NHSBT holding sites (‘hubs’) at Manchester,

Colindale (London) and Bristol, from where they were taken overnight by courier to UK Biocenter. The INTERVAL blood samples

were kept predominantly at ambient temperature from the time of collection to the time of measurement.

At UK Biocenter, the UK Biobank whole blood samples were processed using four Beckman Coulter LH700 Series instruments

while the INTERVAL samples were processed using two Sysmex XN-1000 instruments. The two models of analyzer both measure

full blood counts by a combination of fluorescence and impedance flow cytometry. However, there are some differences in the

cytometric methods used by the instruments to distinguish and count the different types of blood cell. The different analysis tech-

niques require different manufacturer-supplied reagents to treat, lyse and fluoresce the cells, which can result in differences in

the measurement response.

Technical Sample Exclusions

As a blood sample ages, the accuracy of a full blood count (as a measurement of the properties of peripheral blood at the time of

venipuncture) deteriorates. The exact consequences of sample aging depend on the measurement techniques used by the instru-

ment. For example, blood cell membranes become more elastic as a sample ages. Consequently, if the analyzer uses a hypotonic

solution, cells in an older sample tend to swell more at the point of measurement than cells in a younger sample. This excess swelling

leads to bias in the measurement of traits determined as a function of plateletcrit (PCT) or hematocrit (HCT) (Ulset et al., 2014). It may

also become more difficult to differentiate between the types of white cell as a sample ages and very old samples are likely to suffer

from hemolysis (Sowemimo-Coker, 2002).

Greater than 99% of UK Biobank baseline FBCs and 98% of INTERVAL baseline FBCs were measured fewer than 48 hr after veni-

puncture. Respectively 72% and 75% of the FBCs were measured fewer than 24 hr after venipuncture. Although clinical laboratories

do not usually issue FBC reports measured on samples aged for more than about 12 hr, FBCs from blood samples below clinical

standard may still add useful information to genetic association analysis. However there is a tradeoff; the inclusion of very noisy sam-

ples may reduce power if the marginal increase in sample size is insufficient to compensate for the reduction in signal to noise ratio.

Consequently, we excluded participants from the association analysis if they had FBCsmeasuredmore than 36 hr after venipuncture.

This removed 11,490 participants from the UK Biobank phenotype dataset, 3,365 of whom had been genotyped, and 1,490 partic-

ipants from the INTERVAL phenotype dataset.

The Coulter analyzers distinguish platelets from red cells by impedance (Table S1), a proxy for cell volume. Consequently small red

cells can sometimes be confused with large platelets. Sysmex analyzers also use impedance to measure platelet volume, but they

measure platelet count by both fluorescence flow cytometry and impedance and routinely report the former measurement. Sysmex

instruments flag measurements of mean platelet volume (MPV) greater than 13 as unreliable on the grounds that the large volume

measurements suggest contamination of the platelet impedance channel by red cells. We excluded such data points from the

INTERVAL analysis. In order to similarly protect against contamination of platelet variables by red cells in the UK Biobank dataset,

we removed all platelet trait data from FBCs with a technically adjusted MPV measurement larger than the 96th percentile.

Blood Cell Index Data Adjustments

In order to optimize the power to detect allelic associations, we adjusted the baseline blood cell index values from the INTERVAL and

UK Biobank datasets to remove variance explained by technical, environmental and sex effects. We adjusted the data from the

INTERVAL and UK Biobank studies independently because of differences between the study populations, the differences between

the sample collection protocols and the use of different models of hematology analyzer. At the time we carried out the analyses

described in the present publication, the UK Biobank study investigators had released genetic data for approximately one third of

the cohort, which included the UK BiLEVE participants as a subset. However, we chose to adjust the phenotypes from the entire

UK Biobank baseline blood indices dataset (n = 476,675) in order to estimate covariate effects as precisely as possible. Our pheno-

typic adjustments are more extensive than has hitherto been usual for genome-wide association studies. Covariate adjustment ab-

sorbs variance (i.e., ‘‘uses up degrees of freedom’’) andwe do notmodel this directly in the association analyses. However, we do use

Genomic Control (see below), which corrects the test statistics for this modelling omission.

We made the adjustments differently by blood cell index and by analyzer model according to whether the index was measured

or derived. For each analyzer model the measured indices are a minimal subset of indices from which the full set of indices can

be deterministically calculated (Table S1). These subsets were chosen, from all possible minimal subsets, to correspond as closely
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as possible to direct independent measurements made by the analyzers. The derived indices are the indices complementary to the

measured indices and which can therefore be calculated from them.

We made the blood cell index adjustments in two stages. In the first stage we removed technical outliers and independently

adjusted each measured index for technical and seasonal covariates. We then recomputed the derived indices from the measured

indices. In the second stage we adjusted both measured and derived indices for non-seasonal environmental covariates and for sex.

FBC indices divide into variables that have a population distribution with positive support (counts and concentrations), and vari-

ables that have a population distribution with support in [0,1] or [0%,100%] (cell count ratios and volume proportions). We adjusted

the positively supported indices on the log-scale and the proportion-supported indices on the logit scale. We call these scales the

adjustment-scales for the indices. To adjust platelet distribution width and red cell distribution width, we computed the standard

deviations of the platelet volume and red-cell volume distributions, adjusted these on the log-scale and then recomputed the distri-

bution widths as coefficients of variation.

Technical and Seasonal Variance

Clinical FBCs, like all assays, are subject tomeasurement error. Moderate technical variation in FBCs is rarely a concern for clinicians

who use FBC reports to diagnose or exclude blood pathologies that cause a large deviation in a measured blood cell parameter from

its typical population value. However, the power of quantitative trait association analysis depends monotonically on the proportion of

variance explained by the associated allele. It is therefore important to remove as much technical variation from the measured trait

values as possible.

By visual inspection of within-instrument window-averaged time series for each blood cell index (e.g., plots of mean index value by

day of study, by week of study within machine, by time of day within machine) we identified for some or all of themeasured indices for

both studies the following sources of technical variance (Figures S1 and S2):

d differences in the average index value by instrument

d short time periods during which the day-averaged value of the instrument reading deviated dramatically from the global

average value for the instrument over the duration of the study, probably due to temporary aberrant behavior of the instrument

d continuous long term drift in the average index value reported by the instrument over time

d time-discontinuities in average index values probably due to calibration events

d variation in the average index value by time of year

d variation in the average index value by age of sample i.e., time between venipuncture and measurement

d variation in the average index value by the time of day of measurement.

For each blood cell index, we used the central part of the data (the data differing from the median by less than 3.5 median absolute

deviations on the adjustment scale) to estimate the effect on the mean of the (adjustment scale transformed) index of within machine

time-dependent drifts, delay time between venipuncture and measurement, day of the week and time of year. We restricted the

model fit to the central part of the data in order to minimize influence from outlying data points. After fitting the regression model

we computed model residuals for the full dataset and used these residuals to compute index values adjusted for technical effects.

Specifically, we used the R package mgcv (https://cran.r-project.org/package=mgcv) (R Core Team, 2014; Wood, 2011) to fit a

generalized additive model (GAM) with the following regression equation:
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Here:

d a denotes a function transforming the measured index data y to the adjustment scale.

d m (i) denotes the instrument used to acquire measurement i.

d w (i) denotes the day of the week on which measurement yi was acquired.

d t (i) denotes the time difference between the time of measurement of observation i and midnight (am) on the first day of the

study.

d tyear (i) represents the difference between the time of measurement of observation i and midnight (am) on the 1st of January on

the year in which observation i was measured.

d tday (i) represents the difference between the time of measurement of observation i and midnight (am) on the day of

measurement.

d tven (i) represents the difference between midnight (am) on the day observation i was measured and the time of venipuncture.

d Each term in square brackets represents a contribution to the linear predictor.

d s[ ] indicates a smoothing term. For the univariate terms we smooth using P-splines, while for bivariate smooths we smooth

using thin plate splines.

d c[ ] indicates a cyclic smoothing term, used here to model seasonal variation on a circle representing time of year.

d We use the symbol 5 to indicate the presence of an interaction between the smooth and the categorical variable to its right

(in both cases here, the instrument id m (i)).
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The first term in the regression equation models long term drift effects, for which we fit a smooth with 50 knots, allowing a different

drift model within each machine. The second term (bivariate in tday (i) and tve (i) and for which we fit a smooth with 30 knots) jointly

absorbs variation due to mean drift within machine over the course of a day and mean drift caused by the time delay between

venipuncture and measurement. The cyclic term (30 knots) models seasonal effects for which we force consistency across the

instruments. The dummy variable terms model mean differences by day of the week and machine.

After making the adjustment for drift we sought to remove data-points due to periods of aberrant operation. After transforming the

index data to the adjustment scale, we computed a standardized score zd,m tomeasure the deviation of the day (d) and instrument (m)

specific average trait values from the global mean value:

zd;m =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j#faðyiÞ: mðiÞ=m;dðiÞ=dg j

p

3
jmeanfaðyiÞ: mðiÞ=m;dðiÞ=dg % medianfaðyiÞg j

medianfjaðyiÞ % medianfaðyiÞg j g

Here:

d a (yi) represents the trait data for observation i on the adjustment-scale, after correction for drift using the GAM.

d d (i) denotes the day on which the index measurement for i was acquired.

d Measurements acquired on day-instrument pairs with fewer than 10 data-points or for which zd,m > 8 were excluded from

further analysis.

After making these exclusions we refitted the GAM for drift described above to obtain measured index values that are adjusted for

drift effects without the influence of data from aberrant days.We then recomputed the derived indices from themeasured indices. For

some indices, the power gained from the adjustments for technical effects alone is equivalent to thousands of additional samples

(Figure S1).

Exclusions Based on Phenotypes and Covariates

We sought to exclude individuals with blood cancers or major blood disorders from the UK Biobank study on the grounds that, if

included, their noisybloodcountsmay reduce thepower todetectgenetic associations.Usingdata fromthebaselinehealthassessment

self-report, the linked cancer registry and linked hospital inpatient record summaries, we identified and removed individuals suffering

from blood cancers or other blood disorders. Specifically we excluded participants who had a self-report or medical history containing

a record of myelofibrosis, lymphoma, leukemia, malignant lymphoma, multiple myeloma, multiple myelofibrosis or myelodysplasia,

chronic lymphocytic leukemia, chronic myeloid leukemia, acute myeloid leukemia, polycythemia vera, polycythemia, a myeloprolifera-

tive disorder, essential thrombocytosis, a hematological cancer histology report, an unspecified lymphatic or general hematological

neoplasm, a myelodysplastic syndrome, or an unspecified hememalignancy, monoclonal gammopathy, an unspecified hereditary he-

matological disorder, hemochromatosis, thalassemia, hemophilia, sickle cell anemia, neutropenia, lymphopenia or pancytopenia. In

aggregate this excluded 5,045 participants from the UK Biobank phenotype dataset, of whom 1,611 had measured genotypes.

Since we had no access to detailed health record data on the INTERVAL participants, we did not make any similar exclusion for

INTERVAL. However, participants in the INTERVAL study are generally healthier than those in UKBiobank and are active whole blood

donors, therefore the incidence of blood disorders is likely to be substantially lower. Hematologists screened the baseline full blood

counts of INTERVAL participants and very few probable cases of leukemia were identified.

Non-seasonal Environmental and Variance Explained by Sex Differences

We adjusted all indices for environmental and sex differences using a GAM, again solely using the central part of the data (the data

after adjustment for technical effects, differing from the median by less than 3.5 median absolute deviations on the adjustment scale)

to fit themodel. Themeasured environmental covariates differ between the INTERVAL andUKBiobank studies and consequently the

models we fitted differed slightly.

For the INTERVAL study dataset we fit a model with the following terms:

d Aunivariatesmooth (30knots) for ageat venipuncture,withan interactionwithacategorical variabledescribingmenopausal status

with the following levels: male, female-premenopausal, female-postmenopausal, female-had-hysterectomy, no-answer, unsure

d A bivariate smooth (30 knots) for log-height and log-weight (which implicitly adjusts for body-mass index [BMI]), with the same

categorical interaction variable as for age

d A univariate smooth for pack-years of smoking

d A categorical variable describing current smoking habits with levels: never, special-occasions, rarely, occasional, most-days,

every-day, no-answer

d A categorical variable describing alcohol drinking status with levels: never, previous, current, no-answer

d A categorical variable describing current alcohol drinking habits with levels: never, special-occasions, 1-3-times-monthly,

1-2-times-weekly, 3-5 times weekly, most-days, no-answer.

For the UK Biobank study dataset we fit a model with the following terms:

d A univariate smooth (30 knots) for age at venipuncture, with an interaction with a categorical variable describing menopausal

status with the following levels: male, female-premenopausal, female-postmenopausal, female-had-hysterectomy, unsure
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d A univariate smooth (30 knots) for number of days since last period (within women only)

d A bivariate smooth (30 knots) for log-height and log-weight (which implicitly adjusts for BMI), with the same categorical inter-

action variable as for age

d A univariate smooth (30 knots) for quantity of alcohol consumed the day prior to recruitment

d A univariate smooth for pack-years of smoking

d A categorical variable describing current smoking habits with levels: never, special-occasions, rarely, occasional, most-days,

every-day, no-answer

d A categorical variable describing alcohol drinking status with levels: never, previous, current, no-answer

d A categorical variable describing current alcohol drinking habits with levels: never, special-occasions, 1-3-times-monthly,

1-2-times-weekly, 3-5 times weekly, most-days, no-answer.

For both datasets, where data-points were missing for a covariate, we imputed them by the mean covariate value and included a

dummy variable to allow the mean of the index value for individuals with missing data to differ from the mean index value for individ-

uals with non-missing data.

Removal of Outliers and Normalization

We removed observations by index for which there was a large difference between the raw measured index value and the adjusted

index value. Specifically, we removed a data point if the difference, on the adjustment scale, between the original rawmeasured data

and the adjusted data was more than 3.5 median absolute SD from the median of the distribution of such differences for the relevant

index.

We removed outliers from the phenotype data. We first considered outliers in each marginal univariate distribution. For each index

on the adjustment scale, we removed all data-points lying more than 4.5 median absolute deviations from the median index value on

the adjustment-scale. We then grouped the indices as follows:

d MPV, PLT#, PDW, PCT (platelet traits)

d HGB, RBC#, MRV, MCV, MCH, MCHC, RDW, RDW, RET#, HLR, HCT, RET%, HLR%, IRF (mature and immature red cell traits)

d RET, HLR, RET%, HLR%, IRF (immature red cell traits)

d WBC#, NEUT#, MONO#, BASO#, EO#, LYMPH#, MYELOID, GRAN#, (EO+BASO)#, (NEUT+EO)#, (BASO+NEUT)#, NEUT%,

EO%, MONO%, LYMPH%, BASO%, GRAN%MYELOID, EO%GRAN, NEUT%GRAN, BASO%GRAN (white cell traits)

d NEUT#, BASO#, EO#, GRAN#, (EO+BASO)#, (NEUT+EO)#, (BASO+NEUT)#, EO%GRAN, NEUT%GRAN, BASO%GRAN

(granulocyte traits)

d NEUT#, MONO#, BASO#, EO#, MYELOID, GRAN#, (EO+BASO)#, (NEUT+EO)#, (BASO+NEUT)#, GRAN%MYELOID, EO%

GRAN, NEUT%GRAN, BASO%GRAN (myeloid white cell traits)

d all traits

After standardizing the variables on the adjustment scale, we performed a principal component analysis for each group and

computed the sum of squares of the leading d PC-scores where d is the number of independent measurements required to compute

the variables in each group.We compared the sumof squares to a c2d distribution and removed outliers falling into the upper 10 7 tail

probability.

Finally, within each study we quantile-inverse-normal transformed the trait data within each level of a categorical variable formed

by crossing a categorical variable indexing the hematology analyzer with a categorical variable with the levels male, female-premen-

opausal, female-postmenopausal, female-had-hysterectomy, no-answer, unsure.

The final number of participants passing phenotype and genotype QC from each of the studies is shown in Table S2, along with

summary statistics for each blood cell index.

QUANTIFICATION AND STATISTICAL ANALYSIS

Association Tests, Meta-Analyses, and Identification of Distinct Associations

Univariable GWAS

Genetic and phenotypic QC retained 173,480 participants (87,265 in the UK Biobank study dataset, 45,694 in the UK BiLEVE study

dataset and 40,521 in the INTERVAL study dataset). We performed a univariable GWAS for each of the 36 blood cell indices that had

phenotype data measured or derived in all three studies. Specifically, we computed the association statistics (i.e an estimate of the

regression coefficient and the corresponding standard error) for a mixed linear regression of phenotype on the probabilistic imputed

allele dose (i.e., an additive model) separately for each of the three datasets using BOLT-LMM v2.2 (Loh et al., 2015). The linear mixed

model accounts for the genetic component of phenotypic correlation generated by relatedness. In order to maximize protection

against confounding by large scale relatedness, we included a dummy variable for each recruitment center and the first ten PCs

of the study specific kinship matrices as covariates in each regression model.

Meta-Analyses and Significance Threshold

Having performed univariable GWAS within each study, we then combined the results across the three studies using meta-analysis.

For inclusion in the meta-analysis, a variant had to have a study-specific MAF > 0.01%, an imputation dataset-specific information
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score greater than 0.4, and non-missing effect size estimates and standard errors in all three datasets. 29.5 million variants were re-

tained.We performed an inverse variance weightedmeta-analysis usingMETAL (Willer et al., 2010). To guard against confounding by

unmodeled relatedness, we performed double genomic control to adjust the pre and postmeta-analyses standard errors for variance

inflation, with respect to a genome-wide null assumption. The inflation factors were estimated as ratios of themedian of the observed

c2
1 test statistics to the median of the c2

1 distribution. Finally, using the meta-analyses summary statistics, we performed a Wald test

for each blood cell-index variant pair against the null hypothesis of no additive allelic association. We used the significance level a =

8.31x10 9, a threshold recently estimated for genome-wide analyses of common, low frequency and rare variants (UK10K Con-

sortium et al., 2015; Xu et al., 2014).

Heterogeneity Filtering

Substantial statistical evidence for heterogeneity in effect sizes between the studies of ameta-analysis for a genome-wide significant

variant is often taken to suggest a false-positive association. However, effect size heterogeneity in GWAS can be generated by:

d population-genotype interactions (i.e., true allelic effect size differences between studies),

d variation in LD between study populations,

d study specific quantile-inverse-normal transformations, when there are differences in the adjustment of phenotypes for cova-

riates between studies,

d differences in genotyping measurement error between studies (when independent of phenotype, such errors tend to bias as-

sociations toward the null) and

d differences in phenotyping measurement techniques between studies, none of which are necessarily reasons to regard an

observed population association as spurious.

Due to the high power of the present analysis, we found that common variants showing directionally concordant evidence for

association across the three studies were often removed when we filtered variants by thresholding a statistic measuring evidence

for quantitative heterogeneity in effect size (Cochran’s Q). Consequently, we devised an alternative (generalized) statistic to detect

heterogeneity in effect size that we regard as implausible for genuine population associations. The three dimensional plot (Figure S2E)

illustrates our approach.

Model Selection by Stepwise Multiple Regression

Many of our observed associations likely reflect the same underlying causal signal due to LD between the variants. For each blood

index, we therefore sought to identify a parsimonious set of genetic variants explaining the genome-wide significant associations by

stepwise multiple linear regression, using the fastLM implementation in the R package RcppEigen. We first partitioned the blood in-

dex-specific genome-wide significant variants into the unique minimal set of blocks such that no block could be further partitioned

into subsets of variants separated by at least 10Mb. We then performed a block and blood index-specific bidirectional stepwise

model selection procedure, combining the individual level data from all three studies. Every regression model we assessed included

the covariates used in the original marginal analyses (i.e., study-specific principal component scores and dummy variables for

recruitment center). Additionally, we included dummy variables to absorb between-study blood index variation, an adjustment which

was intrinsic to the meta-analyses of marginal associations.

The stepwise procedure started with the ‘empty’ model, containing only covariates as predictors. At each step we adjusted the

model by:

1. adding the unmodeled variant with the smallest p value for association with the residuals of the current model, providing that

such a p value was below the genome-wide significance level (8.31x10 9)

2. iteratively pruning variants from the model when the p value comparing the current model with the sparser model was greater

than the genome-wide significance level, with the variant corresponding to the largest such p value being pruned at each

iteration.

When neither 1. or 2. were possible the procedure terminated. Wemodeled only the additive effects of the imputed allele dosages.

After identifying a terminal set of variants for each block, we merged the variants for each blood index across blocks and ran the

same stepwise procedure but on the merged set of variants for each index, starting with the saturated model. This ensured selection

of a set of variants for each index that weremutually conditionally significant at the genome-wide level, accounting for any residual LD

over 10Mb. Although the stepwise procedure made no adjustment of p values to account for the model search, it also ignored addi-

tional strong evidence for associations from the apposition of distinct signals. Our genome-wide significance level is conservative, so

the selected variants for each index are likely to represent causally distinct signals, except in regions where imputation is imprecise

(where multiple variants may tag a single causal signal).

We report univariable andmultivariable summary association statistics for the variants with conditionally significant associations in

Table S4.

Consensus Set of Variants over Blood Indices

Because we performed a distinct model selection procedure for each blood cell index, a locus that was associated with

multiple indices could be represented by different sentinel variants. To identify conditional variants reflecting the same signals, we

clumped the selected set of variants from all indices using pairwise LD. First, we identified the set of variants considered conditionally
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significantly associated with at least one index after model selection. We then ‘clumped’ the variants by taking each conditionally

significant variant in turn and looking for conditionally significant variants with in LD (r2 > 0.8 in the UK Biobank dataset). If other var-

iants with r2 > 0.8 were found, then these variants were assigned to the same clump. If there were no such variants, then the new

variant was assigned to a new clump. The process was repeated until each variant was assigned to a single clump. We report the

summary information for each clump in Table S3. We defined the sentinel variant within each clump as the variant with the smallest

univariable association p value across all indices.

Annotation of Associated Variants

Conditionally Significant Variant Annotation

We queried dbSNP v14 to retrieve rsIDs for all variants if available (Sherry et al., 2001). All conditionally significant variants

were further annotated using the Ensembl Variant Effect Predictor (VEP) with Ensembl v83 and Gencode v24 for gene annotations

(McLaren et al., 2016). Annotations were retrieved using the ‘‘most severe’’ option, which considers variant annotations across all

genes and transcripts and selects the consequence with the greatest severity in terms of potential functional consequence (Table

S4). Where the most severe consequence affected multiple genes (e.g., a variant that is intronic in overlapping genes), we listed

all genes.

Associations with Traits and Complex Diseases

To identify whether our blood cell trait-associated signals were novel, we extracted previously reported sentinel variants associ-

ated with red blood cell traits, white blood cell traits or platelets from a recent review of published GWAS (Vasquez et al., 2016),

supplemented by a literature review to identify more recent genetic studies of blood cell traits (Chami et al., 2016; CHARGE

Consortium Hematology Working Group, 2016; Eicher et al., 2016; Polfus et al., 2016; Schick et al., 2016; Tajuddin et al.,

2016; Ulirsch et al., 2016). We defined a locus as ‘previously reported’ if our sentinel variant, or any of its strong proxies (defined

as r2 > 0.8 in European participants from the 1000 Genomes project Phase 3 or the UK10K project) had been previously reported

(Table S3).

To identify whether our signals have also been associated with other traits or disease outcomes, we interrogated PhenoScanner

(www.phenoscanner.medschl.cam.ac.uk), a variant-phenotype database capturing a wide range of large-scale genetic association

studies, primarily from GWAS. The database includes the NHGRI-EBI GWAS Catalog (Welter et al., 2014), the GRASP database (Le-

slie et al., 2014), plus more than 100 publicly available sets of summary statistics from published studies. For each of our sentinel

variants, we identified all proxies with r2 R 0.8 in the European participants from 1000 Genomes Phase 3 or the UK10K project.

We then retrieved all associations with p value < 5x10 8. Associations were flipped across proxies and traits to achieve a consistent

direction of effect for each sentinel variant. For ease of interpretation, we split associations into three categories: expression QTL,

metabolites and other traits or diseases (Table S5).

Annotation of Clinically Relevant Genes and Variants

First, we annotated all strong proxies (r2R 0.8) of our sentinel variants using VEP as described above and identified coding variants

likely to have functional consequences (i.e., missense, nonsense, frameshift, splice site). Second, we took a systematic approach to

identifying likely causal genes in regions identified to be associated with blood cell indices, using sets of genes known to cause

relevant rare diseases from ClinVar and the set of genes that contain the alleles defining red cell, platelet and neutrophil antigens.

ClinVar is a manually curated database of genetic variants that have evidence for a pathogenic role in human disease or phenotypes

(Landrum et al., 2016).

Integration with BLUEPRINT Cell Type Specific Epigenetic Data

As part of the BLUEPRINT project, ChromHMM (Ernst and Kellis, 2012) was used to segment the genomes of primary blood cells into

regulatory states obtained from histone marks - H3K4me3, H3K4me1, H3K36me3, H3K27ac and H3K9me3 - and DNaseI hypersen-

sitive sites. The regulatory states are as follows: E1:Transcription low signal H3K36me3, E2:Transcription high signal H3K36me3,

E3:Heterochromatin high signal H3K9me3, E4:Low signal, E5:Repressed Polycomb high signal H3K27me3, E6:Repressed Poly-

comb low signal H3K27me3, E7:Repressed Polycomb TSS high signal H3K27me3 &H3K4me3 & H3K4me1, E8:Enhancer high

signal H3K4me1, E9:Active Enhancer  high signal H3K4me1 & H3K27Ac, E10:Active TSS  high signal H3K4me3 & H3K4me1,

E11:Active TSS  high signal H3K4me3 & H3K27Ac.

We focused on the cell types matched as closely as possible to the GWAS traits, specifically CD34-negative CD41-positive CD42-

positive megakaryocytes (cord blood, 2 samples), erythroblasts (cord blood, 2 individuals), CD14-positive CD16-negative classical

monocytes (venous blood, 2 individuals), mature neutrophils (venous blood, 4 individuals), mature eosinophils (venous blood, 2 in-

dividuals), naive B cells (venous blood, 3 individuals) and CD4-positive alpha beta T cells (venous blood, 4 individuals). We merged

the segmentations across individuals by defining consensus states based onmajority vote plus one. (e.g., for cell typesmeasured in 2

individuals, both individuals must be called in a region as ‘‘Transcription High Signal - H3K36me3’’ for a that to be the consensus call

in the region).

We used LD score regression v1.0.0 (Finucane et al., 2015) to estimate the heritability due to common (MAF > 5%) genetic variants

for each trait and to partition that heritability across regulatory states estimated from epigenomic data measured in matched cell

types. We generated LD scores using the HapMap3 common variants measured in 1000 Genome Europeans (excluding Finns).

We then partitioned the heritability into regulatory states estimated by the BLUEPRINT consortium.
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LD score heritability estimates are based on summary statistics and are biased by genomic control adjustment. Consequently, we

adjusted each raw heritability estimate by the factor

lMETA

nINTERVAL

lINTERVAL
+

nUKBiLEVE

lUKBiLEVE

+

nUKBiobank

lUKBiobank
nINTERVAL

l2
INTERVAL

+

nUKBiLEVE

l2UKBiLEVE
+

nUKBiobank

l2
UKBiobank

;

where each l corresponds to a genomic control inflation factor (Table S2), to undo approximately the effect of our genomic control

adjustments.

In order to measure systematically the statistical significance of the overlaps between our blood cell index-associated variants and

BLUEPRINT epigenetic data, we used GARFIELD (Iotchkova et al., 2016b), a novel enrichment analysis approach that uses genome-

wide association summary statistics to calculate odds ratios for association between annotation overlap and disease status at given

genome-wide statistical significance thresholds. Tests for significance are implemented via generalized linear modeling framework

accounting for LD, minor allele frequency (MAF), and local gene density. LD (r2) was calculated with PLINK v1.9 using variants from

the combined UK10K and 1000 genomes Phase3 European cohorts in 1 Mb windows. Overlap of blood cell index-associated var-

iants with BLUEPRINT annotations was based on genomic position overlap or LD tagging (r2R 0.8). Variants significantly associated

with blood cell indices were ‘greedily’ pruned by sequentially retaining the most significant variant and pruning around it (LD r2R 0.1)

until no significant variants remained. This approach tries to ensure independence of variants in the enrichment tests, while ensuring

that we retain the most significantly associated variants. We tested for enrichment all variants with MAFR 1% reaching a p value of

1x10 8 and performed multiple testing correction based on the number of traits, segmentation states and cell types used.

Integration with BLUEPRINT Molecular QTL Data

Many of the common variants we discovered were non-coding (i.e., intronic, intergenic, in 50 or 30 untranslated regions or were just

upstream or downstream of genes) suggesting they may act through regulatory mechanisms. To investigate this, we tested coloc-

alization of the 29.5 million variants we included in our GWAS of blood indices with BLUEPRINT molecular QTL data (Table S6) using

the software SMR (Summary data-basedMendelian Randomization) (Zhu et al., 2016). The BLUEPRINTQTL data consists of expres-

sion QTL (eQTL), splicing QTL (sQTL) and a histone mark H3K4me1 (hQTL) identifying sites of active or poised enhancers in "200

European samples (Chen et al., 2016). Data were available for monocytes, neutrophils and T cells, hence we restricted our annotation

to loci that were associated with myeloid or lymphoid cell indices. SMR takes the variant with the most statistically significant asso-

ciation with each QTL (defined as p < 5x10 8), then tests whether the ratio of that variant’s effect size with the QTL against its effect

size with each myeloid or lymphoid index is significant (p < 0.001). Having established the presence of a QTL and a blood cell index

association at the same locus, the software then proceeds to test whether this apparently colocalized signal is the result of linkage

(i.e., two independent signals in the same genomic region) or causality/pleiotropy (i.e., the same causal variant affects both the QTL

and the blood cell index). This is performed via a Heterogeneity In Dependent Instruments (HEIDI) test statistic, which assesses the

homogeneity of the ratio across variants in the region, with p > 0.05 indicating colocalization (Figure 6).

Mendelian Randomization Analysis

To evaluate the potential causal role of blood cell indices on common complex diseases, we used the set of variants we identified to

perform multivariable Mendelian Randomization (MR) analysis (Table S7). MR analysis uses the random allocation of alleles at

conception to obtain an ‘‘unconfounded’’ estimate of the association between a risk factor and an outcome, thereby avoiding the

potential residual confounding and reverse causation in observational association studies. This is done by effectively treating the ge-

netic information as a proxy for the exposure (in this case, a blood cell index). Under certain assumptions, particularly that the genetic

variant only has one causal pathway to the disease which is via the blood cell index, one can assess the likely causal relationship

between blood cell index and disease. Multivariable MR analysis has the added benefit that we can estimate the causal effect of

each blood cell index on the outcome, conditioning on all other blood cell indices, thereby allowing us to account for the correlation

between them.

Due to the high degree of genetic correlation between the blood cell indices, in particular due to the presence of calculated and

compound indices, we initially selected the minimal set of indices needed to represent all 36 indices by filtering out those that were

strongly correlated (r2 > 0.8). This left 13 sentinel indices (PLT#, MPV, PDW, HCT, MCH, RDW, RET#, IRF, MONO#, NEUT#, EO#,

BASO# and LYMPH#; Table S1). We obtained variant association summary statistics (i.e., betas and standard errors) from publicly

available data using the PhenoScanner (Staley et al., 2016) and ImmunoBase (www.immunobase.org). To be included, a dataset had

to be large (> 5000 disease cases), have good genome coverage (> 100,000 variants), and allow identification of the direction of effect

at each variant. We were able to analyze three cardiometabolic diseases (coronary heart disease, Type 2 diabetes, chronic kidney

disease), five neuropsychiatric diseases (Alzheimer’s disease, bipolar disorder, cross disorder, major depressive disorder and

schizophrenia) and six autoimmune diseases (asthma, celiac disease inflammatory bowel disease, multiple sclerosis, rheumatoid

arthritis and Type 1 diabetes). We identified overlapping variants between our disease dataset and the list of proxies (variants

with R2 > 0.8 with the sentinel variant) for our sentinel variants which went into the MR analysis. We then performed multivariable

MR using the inverse variance weighted approach, which uses summary statistics to regress the effect of each variant on the disease
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outcome against its effects on the blood cell indices (Burgess and Thompson, 2015). To account for the 182 tests (13 blood cell trait

indices x 14 disease outcomes), we applied a Bonferroni correction and considered associations with p < 2.7x10 4 (i.e., 0.05/182) to

be significant.

To assess how robust our results were, we then performed sensitivity analysis using multivariable MR-Egger to test for pleiotropy.

This fits the same model as the multivariable MR but allows the intercept to be freely estimated, which represents the level of unbal-

anced pleiotropy in the system (Bowden et al., 2015). Furthermore, for each blood cell index the regression coefficient is realigned

(i.e., flipping the signs so all the associations with the index are increasing and adjusting the signs on the association with the disease

accordingly to account for this) separately which ensures the intercept represents the level of unbalanced pleiotropy for that

index. Since many of our most significant results involved white blood cell indices and autoimmune diseases, which both have large

components of heritability driven by the MHC region, we also performed a sensitivity analysis removing the region surrounding MHC

(chr6:20,000,000-40,000,000). To ensure our strong association between eosinophil count and asthma risk was genuine and not

driven by a few variants with very strong effects, we removed all known variants associated with asthma at GWAS levels (p <

5x10 8) before repeating our analysis for asthma as a sensitivity analysis. Finally, we assessed whether our results were driven by

loci that are associated with many cell lineages by repeating our analyses excluding the 42 sentinel variants representing clumps

univariately associated with all five index classes (i.e., platelets, mature red cells, immature red cells, myeloid cells, lymphoid cells).
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Supplemental Figures

Figure S1. Adjustment for Technical Covariates Affecting Full Blood Count Measurements, Related to Figure 1, Tables S1 and S2, and the

STAR Methods

(A) Day averaged measurements of MCV taken from a single instrument over the course of UK Biobank baseline recruitment. The discontinuities may have been

generated by calibration of the machine against a variable deterministically related to MCV. Continuous drift is visible within some of the piecewise continuous

segments. The left plot is obtained using the raw data while the right plot is obtained using the technically adjusted trait, showing elimination of discontinuities and

drift.

(B) The effect of the time of day of acquisition on the average measurement of MONO%. Data are taken from a single Coulter instrument over the full UK Biobank

baseline recruitment period. The left plot is obtained using the raw data while the right plot is obtained using the technically adjusted trait, showing elimination of

the dependence of the mean of MONO% on time of day.

(C) Example of the effect of time delay between venipuncture and acquisition on the measurement of the mean white blood cell count. Each point gives the

averageWBC# for samples acquired during baseline UKBiobank recruitment on a single Coulter instrument during a fifteenminute delay interval. The boundaries

(legend continued on next page)



of the shaded region interpolate the 95% confidence intervals of the means. The left plot is obtained using the raw data while the right plot is obtained using the

WBC# trait data that has been adjusted for the technical covariates. The dependence of the mean cell count on delay time has been eliminated.

(D) Percentages of the variance of each UK Biobank measured variable explained by the adjustment for technical covariates and seasonal drift on the relevant

adjustment scale. Integer labels show the effective number of additional samples gained frommaking the technical adjustments, meaning the expected number

of additional samples that would be required to obtain equivalent p values in a GWAS for the trait if the adjustment were not made.

(E) As for (D) except for INTERVAL.
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Figure S2. Adjustments for Sex and for Biological and Environmental Covariates Affecting Full Blood Count Measurements, Related to

Figure 1, Tables S1 and S2, and the STAR Methods

(A) The dependence of mean neutrophil count on sex and menopause status in the UK Biobank data adjusted for technical effects. The top plot is obtained using

the raw data while the bottom plot is obtained adjusting the data for menopause and sex effects showing the elimination of the variance these covariates explain.

(B) Day averaged measurements of neutrophil count taken from a single instrument over the course of the UK Biobank baseline recruitment. There is a long run

upward drift in the average count over time. Seasonal oscillation in the average counts is also visible. The top plot is obtained using the raw data while the bottom

plot is obtained using the technically adjusted data, showing the elimination of drift and seasonal oscillation.

(C) Percentage of variance of UK Biobank traits explained (on the relevant adjustment scale) by sex and covariates affecting full blood counts, including age,

menopausal status, smoking and alcohol variables.

(D) As for (C) except for INTERVAL traits.

(E) Illustration of the method used to determine the weight of evidence that heterogeneity in effect sizes across the three studies exceeded a tolerance criterion.

The axes represent effect sizes in UK Biobank, INTERVAL and UKBiLEVE. The black dot represents the vector of study specific effect size estimates (bb UK Biobank,

bb INTERVAL, bb UK BiLEVE,) for a variant. If the dot lies inside the infinite yellow double-pyramid (defined by three planes intersecting the origin, each normal to one of

n1 = (1, 1/4, 1/4), n2 = ( 1/4,1, 1/4), n3 = ( 1/4, 1/4, 1)) we consider that there is no evidence of between study heterogeneity. If the black dot lies outside the

yellow double-pyramid we measure the strength of evidence for heterogeneity as the distance between the black dot and the nearest point on the surface of

the pyramid (red dot), with distances scaled to account for the standard errors of the study specific estimators. The nearest point on the pyramid is thus defined as

the point in the smallest confidence surface for the estimators that intersects the pyramid (blue ellipsoid). We thresholded the distance score at 5.2 and filtered all

variant-blood index pairs exceeding the score from further analysis.
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Figure S3. Quality Control of Genetic Data for UK Biobank, UK BiLEVE, and INTERVAL, Related to the STAR Methods

Workflow describing QC steps for genotypic datasets. Detailed description of QC can be found in the STAR Methods and on the UK Biobank website (http://

biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155580).

(A) INTERVAL samples.

(B) UK Biobank + UK BiLEVE samples.


